ADVANCED TARGETING SYSTEMS

Concentration Calculations Convert molarity to $\mathrm{mg} / \mathrm{ml}$ and $\mathrm{mg} / \mathrm{ml}$ to molarity

Normally, our concentrations are given in units of milligrams per milliliter $(\mathrm{mg} / \mathrm{ml})$, but often data sheet quality assurance data are expressed in molarity (moles per liter, M) or fractions of that - e.g., micromolar ($\mu \mathrm{M}, 10^{-6} \mathrm{M}$) or nanomolar ($\mathrm{nM}, 10^{-9} \mathrm{M}$).

Below are calculations to convert between these units. Or visit our website to use online calculators and worksheets.

ATSbio.com/calculators

FROM (mg/ml) TO molarity (M)

Divide the concentration ($\mathrm{mg} / \mathrm{ml}$) by the molecular weight (Da or $\mathrm{mg} / \mathrm{mmol}$). We will use the example of a typical immunotoxin that has a molecular weight of 210 kDa (or $2.1 \times 10^{5} \mathrm{mg} / \mathrm{mmole}$) - the molecular weight is usually found on the data sheet - and a common concentration is $1.0 \mathrm{mg} / \mathrm{ml}$.

$\frac{1.0 \mathrm{mg} / \mathrm{ml}}{2.1 \times 10^{5} \mathrm{mg} / \mathrm{mmole}}$	$=0.48 \times 10^{-5} \mathrm{mmole} / \mathrm{ml}$
	$=4.8 \times 10^{-6} \mathrm{mmole} / \mathrm{ml}$
	$=4.8 \mu \mathrm{M}$

On the left side, the mg units cancel each other, leaving units of mmole/ml that is equal to moles/liter or molar (M). Therefore, $0.48 \times 10^{-5} \mathrm{mmole} / \mathrm{ml}=0.48 \times 10^{-5} \mathrm{M}$ or $4.8 \times 10^{-6} \mathrm{M}$. This, of course, can be expressed as $4.8 \mu \mathrm{M}$, or 4.8 micromolar.

In summary: concentration (grams per liter) \div molecular weight (grams per mole) $=$ moles per liter.

FROM molarity (M) TO ($\mathrm{mg} / \mathrm{ml}$)

Multiply the molar concentration (M or moles per liter) by the weight (Da or $\mathrm{mg} / \mathrm{mmol}$). We will use the example of an immunotoxin at 1.0 nM concentration (or 1.0×10^{-9} moles per liter) and molecular weight of 210 kDa (or $2.1 \times 10^{5} \mathrm{mg} / \mathrm{mmole}$).

$$
\begin{aligned}
1.0 \times 10^{-9} \mathrm{~mole} / \mathrm{L} \times 2.1 \times 10^{5} \mathrm{~g} / \mathrm{mole} & =2.1 \times 10^{-4} \mathrm{~g} / \mathrm{L} \\
& =2.1 \times 10^{-1} \mu \mathrm{~g} / \mathrm{ml} \\
& =0.21 \mu \mathrm{~g} / \mathrm{ml}
\end{aligned}
$$

On the left side, the mole units cancel each other, leaving units of g / L. Therefore, $2.1 \times 10^{-4} \mathrm{~g} / \mathrm{L}=2.1 \mathrm{x}$ $10^{-1} \mu \mathrm{~g} / \mathrm{ml}=0.21 \mu \mathrm{~g} / \mathrm{ml}$.

In summary: molar concentration (moles per liter) x molecular weight (grams per mole) = grams per liter.

